Telencephalic neural activation following passive avoidance learning in a terrestrial toad.
نویسندگان
چکیده
The present study explores passive avoidance learning and its neural basis in toads (Rhinella arenarum). In Experiment 1, two groups of toads learned to move from a lighted compartment into a dark compartment. After responding, animals in the experimental condition were exposed to an 800-mM strongly hypertonic NaCl solution that leads to weight loss. Control animals received exposure to a 300-mM slightly hypertonic NaCl solution that leads to neither weight gain nor loss. After 10 daily acquisition trials, animals in the experimental group showed significantly longer latency to enter the dark compartment. Additionally, 10 daily trials in which both groups received the 300-mM NaCl solution after responding eliminated this group effect. Thus, experimental animals showed gradual acquisition and extinction of a passive avoidance respond. Experiment 2 replicated the gradual acquisition effect, but, after the last trial, animals were sacrificed and neural activation was assessed in five brain regions using AgNOR staining for nucleoli-an index of brain activity. Higher activation in the experimental animals, relative to controls, was observed in the amygdala and striatum. Group differences in two other regions, lateral pallium and septum, were borderline, but nonsignificant, whereas group differences in the medial pallium were nonsignificant. These preliminary results suggest that a striatal-amygdala activation could be a key component of the brain circuit controlling passive avoidance learning in amphibians. The results are discussed in relation to the results of analogous experiments with other vertebrates.
منابع مشابه
Evolutionary Responses to Invasion: Cane Toad Sympatric Fish Show Enhanced Avoidance Learning
The introduced cane toad (Bufo marinus) poses a major threat to biodiversity due to its lifelong toxicity. Several terrestrial native Australian vertebrates are adapting to the cane toad's presence and lab trials have demonstrated that repeated exposure to B. marinus can result in learnt avoidance behaviour. Here we investigated whether aversion learning is occurring in aquatic ecosystems by co...
متن کاملEmotional and spatial learning in goldfish is dependent on different telencephalic pallial systems.
In mammals, the amygdala and the hippocampus are involved in different aspects of learning. Whereas the amygdala complex is involved in emotional learning, the hippocampus plays a critical role in spatial and contextual learning. In fish, it has been suggested that the medial and lateral region of the telencephalic pallia might be the homologous neural structure to the mammalian amygdala and hi...
متن کاملProteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning
Morphine’s effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine ...
متن کاملProteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning
Morphine’s effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine ...
متن کاملAngiotensin II type 1 receptor blocker losartan attenuates locomotor, anxiety-like behavior and passive avoidance learning deficits in a sub-chronic stress model
Objective(s): Stress alters sensory and cognitive function in humans and animals. Angiotensin (AT) receptors have demonstrated well-established interactions in sets of physiological phenomena. AT1 receptors can play a part in stress-induced activation of hypothalamic-pituitary-adrenal (HPA) axis; besides angiotensinergic neurotransmission plays a pivotal role in stress-evoked physiological resp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Behavioural brain research
دوره 315 شماره
صفحات -
تاریخ انتشار 2016